Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1.
نویسندگان
چکیده
BACKGROUND Vitamin K epoxide reductase subunit 1 (VKORC1) is the molecular target of coumarin anticoagulants and mutations in VKORC1 have been identified previously in individuals who required high warfarin doses. OBJECTIVE Detailed characterization of the relationship between variation in VKORC1 and the warfarin resistance phenotype. PATIENTS AND METHODS Serum warfarin concentration and coagulation parameters were determined in 289 subjects who required warfarin doses >20 mg day(-1). The VKORC1 sequence was studied in selected study subjects. RESULTS Twenty-eight out of 289 (10%) subjects had serum warfarin >2.3 mg L(-1) during stable therapeutic anticoagulation indicating pharmacodynamic warfarin resistance. Detailed analysis of 15 subjects from this group showed that eight out of 15 (53%) had nucleotide substitutions in VKORC1 predictive of p.V66M, p.L128R, p.V54L or p.D36Y. VKORC1 was normal in the remaining seven out of 15 (47%) subjects and in nine out of nine (100%) subjects with high warfarin dose requirement not caused by pharmacodynamic resistance. At referral, subjects with VKORC1 mutations received a median warfarin dose of 32 mg day(-1) (range 22-55) and had a median serum warfarin concentration of 4.6 mg L(-1) (range 2.6-9.0). VKORC1 substitutions were associated with a requirement for high warfarin doses but not with adverse clinical events. Family members with VKORC1 nucleotide substitutions and not receiving warfarin had undetectable PIVKA-II and K(1) epoxide (K(1)O). CONCLUSIONS Nucleotide variations in VKORC1 are a common cause of pharmacodynamic warfarin resistance but are not associated with adverse outcome during anticoagulation. Mutations associated with warfarin resistance do not cause a discernible defect in VKORC1 reductase function.
منابع مشابه
Frequency of two VKORC1 gene variants and its correlation with warfarin maintenance dose
Warfarin is a commonly-prescribed anticoagulant used to treat and prevent thromboembolic events. The requirement for varying doses of warfarin depends on genetic and environmental components. In this study, the frequency of two single-nucleotide polymorphic variants of the vitamin K epoxide reductase complex subunit 1 (VKORC1) gene (1173 C>T (rs9934438) and 3730 G>A (rs7294)) and its correlatio...
متن کاملThe Contribution of VKORC1 and CYP2C9 Genetic Polymorphisms and Patients’ Demographic Characteristics with Warfarin Maintenance Doses: A Suggested Warfarin Dosing Algorithm
The requirement of varying doses of warfarin for different individuals can be explained by environmental and genetic factors. We evaluated the frequency of vitamin K epoxide reductase complex subunit 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) variants together with patientdemographic characteristics and investigated their association with warfarin dose requirement with the ob...
متن کاملThe Contribution of VKORC1 and CYP2C9 Genetic Polymorphisms and Patients’ Demographic Characteristics with Warfarin Maintenance Doses: A Suggested Warfarin Dosing Algorithm
The requirement of varying doses of warfarin for different individuals can be explained by environmental and genetic factors. We evaluated the frequency of vitamin K epoxide reductase complex subunit 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) variants together with patientdemographic characteristics and investigated their association with warfarin dose requirement with the ob...
متن کاملAssociation of Warfarin Therapy with APOE and VKORC1 Genes Polymorphism in Iranian Population
Warfarin is a vitamin K antagonist that genetic and non-genetic factors affected on its doserequirement in the patients with cardio vascular disease. The aim of this study was whetherthe APOE and VKORC1 polymorphisms influence on warfarin dose requirements in the partof Iranian patients. Blood samples were collected from 86 warfarin-treated patients. Afterextraction of genomic DNA, the VKORC1 (...
متن کاملWarfarin pharmacogenomics.
Warfarin, an anticoagulant, is used to prevent and treat thromboembolic disease. One of the drawbacks of this agent, also known as Coumadin (Bristol-Myers Squibb), is that it is difficult to administer at the correct dose as a result of its narrow therapeutic index, its tendency to cause bleeding, and the individual variability in patient response. Achieving safe and effective doses of warfarin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of thrombosis and haemostasis : JTH
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2008